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An analytically solvable model for sand avalanches of noninteracting grains of 
sand, based on the Chapman-Kolmogorov equations, is presented. For a single 
avalanche, distributions of lifetimes, sizes of overflows and avalanches, and 
correlation functions are calculated. Some of these are exponentials, some are 
power laws. Spatially homogeneous distributions of avalanches are also studied. 
Computer simulations of avalanches of interacting grains of sand are compared 
to the solutions to the Chapman-Kolmogorov equations. We find that within 
the range of parameters explored in the simulation, the approximation of 
noninteracting grains of sand is a good one. 

KEY WORDS: Self-organized criticality; avalanches; branching processes; 
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1. I N T R O D U C T I O N  

A signal whose power spectrum S(f) scales over a broad range of frequen- 
cies as 1If ~, where fl is of the order of unity, is called " l / f  noise." The great 
variety of examples of 1If noise has made its explanation a challenge. 
Examples include earthquakes, the light from quasars, the intensity of 
sunspots, the current through resistors, the sand flow in an hourglass, the 
flow of the river Nile, interbeat intervals of the mammalian heart, stock 
exchange price indices, income distribution, scientific productivity, body 
weights, the performance of cooperative processes, and more/1-7) In refs. 2 
and 3 it is shown how "multiplicative processes" and "amplification 
processes" naturally produce a 1If noise. This explanation suits the second 
half of the preceding examples well. 
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The first half are systems through which something is flowing. This is 
known to lead to self-organization/v) Bak etaL (1) have put forward 
sandslides as a paradigm for this class of systems. Based on numerical 
studies, they have argued that these systems have time correlation functions 
that decay according to a power law. This is one of the meanings that "self- 
organization" in time has, because time correlation functions usually decay 
exponentially, that is, faster than by a power law. It also implies 1If noise, 
because if the correlation function behaves as It[-~, its Fourier transform 
behaves as [on[ ~-1 (see Appendix A). Closed systems at the critical point 
are also known to have power-law-decaying correlation functions. 
However, a fine tuning is required to set them in the initial state, whereas 
the systems exemplified by sandslides evolve naturally toward it,(1'5'6) thus 
the word self-organization. 

An interesting and simple discrete-time branching process model for 
avalanches has been presented by AlstrCm and its critical exponents have 
been derived/8) In the present article, we discuss extensively a continuous- 
time branching process model. The theoretical advantage of the latter 
model is not only that in most situations time is better described by a 
continuous parameter, but also that in the former model synchronization 
between the "branching" of different grains of sand is assumed. Even 
though both models have the same t ~ oe limit,, as we shall show in 
Appendix B, this is not a priori obvious, since the particular discrete-time 
model presented in ref. 8 cannot be embedded in a continuous one (ref. 9, 
p. 102), that is, there is no continuous-time branching process which, con- 
sidered at regular intervals of time, is equivalent to the discrete one. 

In Section 2 we present the model. In Section 3 we show that if we 
make the approximation that the grains of sand are probabilistically inde- 
pendent, the model is equivalent to a Chapman-Kolmogorov equation that 
can be solved analytically. In Section 4 we calculate the distributions of 
lifetimes and sizes of overflows and avalanches. In Section 5 we find and 
discuss various time correlation functions. In Section 6 we consider an 
observer immersed in a random distribution of avalanches, in any number 
of dimensions. In Section 7 we explore numerically, the case of interacting 
grains of sand. We state our conclusions in Section 8. 

2. T H E  M O D E L  

In our probabilistic model for avalanches, in an infinitesimal amount 
of time dt only three things can happen to a rolling grain of sand: (1) it 
might be absorbed, (2) it might extract another grain of sand, or (3) it 
might just roll on. Let the probabilities be p(t)dt, 2(t)dt, and 
1 -  [~( t )+ #(t)] dt, respectively. In the critical state, 2( t )=  #(t). How the 
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critical state was arrived at is not part of this model. If the properties of the 
surface of the sandpile are everywhere the same, then # and )o can only 
depend on the velocity of the rolling grain. Assume that at t = 0 (the time 
at which the grain of sand is dropped), 2 (0 )=  #(0) and that the velocity 
of the grain of sand increases. Then absorption becomes less-likely and 
extraction more likely. Thus, 

#( t )  < i , (0 )  = ~ (0 )  < ,~(t) 

Conversely, if the velocity were to diminish, 

u(t)  > u(0) = ~(0) > ~(t) 

Thus, the velocity of the grain of sand is going to remain constant, and 
2 = # is independent of time. 

It is clear that the three above-mentioned possible infinitesimal fates of 
a grain of sand will, over a finite time, give rise to a "tree" whose branches 
will be the tracks left by the rolling grains of sand. Trees so defined are 
studied by the theory of branching processes. (9) For  us this tree (or a 
constant time section of it) will be the avalanche. It can be embedded in 
any number of dimensions. Consequences of this embedding are discussed 
in Section 7. In the next section we obtain a complete description of the 
ensemble of these trees, provided different grains of sand are independent, 
by which we mean that each of them behaves as if the others did not exist. 
Again in Section 7 we explain why this is an approximation that works 
better in a large number of dimensions. 

Finally, for the benefit of readers used to cellular automaton models 
of avalanches, one can think of the "states" of this model as being labeled 
only by j, the number of grains of sand rolling at time t, where t is the time 
since the initiating grain was dropped. 

3. P R O B A B I L I S T I C  I N D E P E N D E N C E :  
T H E  C H A P M A N - K O L M O G O R O V  E Q U A T I O N S  

Under the assumption of the probabilistic independence of grains, 
which will be explained in the derivation that follows, the model has an 
analytical solution~ Given #, the probability Pj(t) of finding j grains in 
motion at a time t after one grain of sand was dropped can be found. One 
way of doing this is by solving the backward Chapman-Kolmogorov 
equation, which we now review. (For a more complete discussion of the 
mathematics involved in this problem, see the book by Harris. ~ We warn 
the reader that the notation used in ref. 9 is similar to, but not the same 
as ours.) 
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Assume that the Pj(t), j e  N, admit a Maclaurin expansion: 

Pj( t )=pf l+o( t  2) (pj>~O) j # l  

Pl(t) = 1 + pl t + o(t 2) (Pl < 0) 
(1) 

For example, in our case we would have 

P0 = P2 = #, 

The normalization condition 

Pl = - 2 #  (2) 

implies 

P / t ) =  1, v t ~ R  + (3) 
j = O  

~, p i = 0  (4) 
j = 0  

We now define Pk~j(t)  as the probability of finding j rolling grains at 
time t' + t if there are k rolling at time t' or a time t after k grains of sand 
were dropped. We also define the generating function of the probabilities, 

F(s, t) = Pj(t)s j, s~ [0, 1] 
j = O  

Write now Pj(t + dt) as follows: 

Pj( t+dt)= ~ P~(dt) Pk~j(t)  
k = O  

P j ( t + d t ) - P j ( t ) =  ~ pkPk_~(t) dt 
k = O  

In general 

(5) 

(6) 

(7) 

P~_j( t )  = Y~ P . s ~ ) ( t )  (8) 
ll,--,,lk 

11+ . . .  + l k =  j 

where P(t,,...,~k)(t) is the probability that, in a time t, the first grain of sand 
has produced l~ grains of sand ..... and the kth  grain, Ik grains of sand. 

If the behavior of a grain of sand is not affected by the others, then 
P (tl,...,t~)( t ) factorizes: 

P~tl,...,tk)(t) = Pz,(t)''" Ptk(t) (9) 
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With this assumption 

k = 0 l l , . . . ,  lk 
l~ + . . .  + l ~ = j  

k = 0  j = 0  l l , . . . , /k  
/ 1 +  "'" + l k = j  

= ~ pk[F(s, t)] k 
k = 0  

(10) 

(11) 

If we now define 

OF(s, O) 
h(s) - Ot (12) 

we can write Eq. (8) as 

OF(s, t) 
h[F(s, t)]  (13) 

0t 

which is the backward Chapman-Ko lmogorov  equation. In our case 
[from (2)] 

h ( s ) = p ( 1  - s )  2 (14) 

Since an appropriate choice of time units will make the numerical 
value of kt equal to one, we will set # = 1 in the theoretical discussions. In 
these units, the backward C hapm an-Ko l m ogorov  equation for our case 
reads 

1 - 2F(s, t) + F(s, t) 2 -  OF(s, t) at (15) 

with the initial condition 

F(s, 0 ) = s  (16) 

which means that at time t = 0 we have one grain of sand. Equation (15) 
is of the Riccati type and can be solved by means of the substitution 

0 
F(s, t) -- - ~ In u(s, t) (17) 
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The solution that satisfies the initial condition (16) is 

( 1 - s )  t + s  
F(s, t) 

(1- -s )  t + l  
(18) 

By differentiating Eq. (18), we find that 

t 
P~ = 1 + t 

1 (  t ] j+l  
P j ( t ) = -~ \ - i -~t  J ' j r  

(19) 

The expected number of grains of sand is 

jPj(t)=~F~_~ t) (20) 
j=o 

which is equal to one at all times, consistent with the defining condition for 
the critical state, 2(0  = #(t). However, lim, ~ oo Po(t) = 1, which means that, 
with probability one, any avalanche will die. 

4. D ISTRIBUT IONS OF LIFETIMES A N D  SIZES OF 
OVERFLOWS A N D  A V A L A N C H E S  

The probability density of lifetimes of the avalanches is 

dPo(t ) 1 1 
p ( t )=  dt - ( 1 + 0 2  ' - 7 + } 5  (21) 

Thus this analytic model predicts a power law behavior for the 
lifetimes, with an exponent of - 2 .  The computer simulations done in 
ref. 1 yield exponents of -0 .43  and -0 .92  for dimensions of 2 and 3. But 
these exponents cannot be asymptotic because then the corresponding tails 
would subtend an infinite area. Thus our model and the original one of 
Bak, Tang, and Wiesenfeld may still be asymptotically equivalent. 

If we assume that time is proportional to the number of generations, 
the discrete-time model also yields a t -2 distribution for the lifetimes. (s) 

Consider now a conical sandpile with critical slope sitting on a disk 
whose diameter is equal to the diameter of the base of the pile. We are 
interested in the distribution of sizes of the overflows that result when a 
grain of sand is added at the top. (The size of the overflow has been called 
the "drop number" D in other models. (1~ A useful picture is to see each 
avalanche as a tree rooted at the top of the sandpile. Then D is the number 
of branches that reach the edge of the sandpile. If we assume, as implied 
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by Section 2, that the component along the generatrix of the velocity of the 
grains of sand as they roll down is constant and choose units of length such 
that its numerical value is 1, then in Eq. (19), 

1 (__f___t ~ j+l  
P j ( t ) = - ~ \ l + t J  , j # O  

t is the length of the generatrix of the cone and an exponential distribution 
for D is predicted. The same is true for any discrete-time model (ref. 9, 
p. 22) (not only for the one presented in ref. 8). Experiments performed so 
far with real sand remain inconclusive. (11'12) 

We now turn our attention to the sizes of the avalanches. The defini- 
tion of "size" of an avalanche depends on the model used. (For cellular 
automaton models it is often referred to as "the flipping number" F and it 
is defined in ref. 10.) In our case, think of the paths traced by the grains of 
sand as branches of a tree, all of which have the same cross section. The 
volume of that tree would then be the size of the avalanche. 

One way to compute it would be as follows. Cut the tree at some 
regular spacing. Consider the spacing and the total number of branches 
cut. If we let the spacing go to zero, then the product of these two 
quantities will tend to the volume of the tree, except for a constant which 
is unimportant for our purposes. 

We shall now calculate along the lines of the preceding paragraph (see 
ref. 9 and references therein). First, the generating function for the prob- 
ability of cutting Jl branches at time At and J2 branches at time 2 At is 

-- ~ Pj,(At) y~ J2 PJl ~J2(At) 3'1 3'2 
j l  , J 2  - -  0 

= ~ Pj,(dt) s{' ~ Pj,_i2(At)s{2 
Jl = 0  j2=O 

= F(slF(s2, At), at) (22) 

By induction, the generating function for the probability of finding j l  
branches at time At, J2 branches at time 2 At ..... JN branches at time NAt  
is 

F(s, F(... SN_ I F(S N, at), at),..., At) (23) 

Let now Q(NAt, s) be the generating function for the probability of the 
sum Jl + "'" + JN to be equal to m. If 

Q(s, N A t ) =  - ~ Qm(NAt)s m (24) 
m = 0  
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then 

and 

Qm(N At) = ~' P j I ( A t )  Pi , -~J2(At)  "'" PJN ~ ~JN(At)  
J l +  " ' "  + j N = m  

Q(s, NAt)= F(sF(sF(... sF(s, At), At),..., At)) 

where F appears N times. The limit 

Q(s) =- lim 
N ~ c x D  

(25) 

(26) 

Q(s, NAt) (27) 

exists (this can be heuristically understood from the fact that the probabil- 
ity of extinction for a critical branching process is one) and, from (26), 
satisfies the functional equation 

O(s) = F(sQ(s), At) (28) 

which can be easily solved for our case, as well as for the discrete-time case 
considered in ref. 8. 

However, for the purposes of establishing that the sizes of the 
avalanches are distributed according to a power law, it suffices to quote a 
theorem by Otter, (13'9) which states that, for critical processes, the solution 
to (28) satisfies 

Qm ~ m 3/2 as m ~ oo (29) 

This result also applies to discrete-time branching processes, since F(s, At) 
can obviously be considered as the generating function for such a process. 
The relation between (29) and critical exponents is discussed in ref. 8. 

5. C O R R E L A T I O N  F U N C T I O N S  

Very often, in systems which might be modeled by some sort of chain 
reaction process, only Pj(t) is observable, for some fixed t. Examples 
include light from quasars and the intensity of sunspots. However, if not 
only its final outcome, but also the avalanche itself is observable, correla- 
tion functions can be measured. In this section we will calculate correlation 
functions for a single avalanche and for a succession of avalanches at 
regular intervals. 

Since the avalanches have, with probability one, a finite lifetime, the 
process at hand is neither ergodic nor stationary (in the sense of ref. 14). 
Therefore, the correlation functions will be calculated by performing an 
ensemble average, and we will not average over time. 
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The ensemble average value of the product of the number of grains at 
time t', # (t'), times the number of grains at times t' + t, # (t' + t), is 

( # ( t ' )  #(t+t '))  

j = O  k=O 

dF j = ~ JPj(t')--~-s(1, t)= ~ j=Pj(t')F J l(1, t) 63F(1, S 
j=o j=0 

c32F 
= ~ j(j-1)Pj(t ' )+ ~ Pj(t')=l+~s2(1, t' ) 

j=o j=o 

= 1 + 2t' (30) 

This correlation function does not depend on t and diverges as t' -+ 0o. 
Though at first sight these facts may be surprising, they are not particular 
to this model and are actually quite general. 

The correlation function of any critical branching process does not 
depend on t. To see this, simply take the derivative 

& (#(t ')  #(t'+t)) 

~ kPj~(t)  =o (3~1 = jPj(t') -~ 
j = O  0 

since the term in parentheses is the expected value for j avalanches, which 
is j. [-We have evaluated Eq. (30) in a slightly longer way to illustrate 
techniques to be mentioned later.] 

The second property of the correlation function (30) holds for any 
nontrivial [-i.e., Pl(t)vL 1] critical process. For such processes the extinc- 
tion probability is 1, (9) or, in other words, 

lim ~ Pj(t) =0 (32) 
t ~ ~  1 

which implies 

lim ~ j2pj(t)= lim ~ j2pi(t ) 
t ~ oo j ~ 0 t --+ oo j = m 

> m  lira ~ jPj(t)=m, Vm~N (33) 
t ~ ~  j = r n  

822/72/1-2-12 
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The criticality of the process, Z;=ojPj(t)= 1, and (30) imply 

lim ~ jPj(t)= 1, 
t ~ o o  . 

j = m  

Vm e N  

We can now apply these results to the correlation function: 

lim ( # ( t ' )  #( t+t ' ) }  
t t ~  o o  

= lim ~ jP j ( t ' )~  kPj~k(t) 
t '--+ ~ 1 7 6  j = O  k = O  

= lim ~ j2p,(t')= lim ~ j2P,(t')>m, 
t '  --+ oo j = 0 t '  --+ oO j = rn 

(34) 

Vm~ N (35) 

which means that the limit is infinite, since m is arbitrary. Note that the 
process does not have to be critical for the preceding proof to go through. 
It is sufficient that lira, ~ 0o ( # ( t ) )  r 0. 

The intuitive idea behind the proof is that if lim,~ ~ Po(t)= 1 but 
l i m , ~ o o ( # ( t ) ) ~ 0 ,  then, for large times, the probability 1 - P o ( t )  of 
nonextinction has "migrated" to very large j's. If instead of computing the 
first moment of {Pj(t)}j~N, w e  compute the second moment, which is 
essentially what the correlation function is, then the result must be infinite. 

Finally we want to mention that the knowledge of ( # (t') # (t' + t ) )  = 
1 +2 t "  does not give much information about the possible values of 
# (t') # (t + t'), since their dispersion is very large. A calculation based on 
the techniques of Eq. (30) shows that 

( [# ( t ' )  # ( t ' + t ) - - ( # ( t ' )  # ( t ' + t ) ) ]  2) 

= 24t '3 + 12t'2t + 32t '2 + 12tt' + 10t' + 2t (36) 

In practice, however, one does not observe avalanches of unbounded 
lifetime. It is therefore interesting to calculate correlation functions for 
avalanches of fixed lifetime T. If we introduce the variable t" = T -  t - t', we 
have 

( # (t') # (t' + t) )lifetime = T 

EJ~176176 Y'k~176 kPj-+k(t)[d(P~ (37) 
= Ej~o ej(t') EY=o Pj-k(t)Ed(Po)k/dt"](t') 

because [d(Po)k/dt"](t ") is the probability density of death for an avalanche 
that had k grains at time t " =  0. Expression (37) can be evaluated using 
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techniques similar to the ones used in the evaluation of expression (30). We 
obtain 

( # ( t ' )  # ( t  + t') )lifetime=t+t, +t,, 

= ~ ,  Po(t") (t, Po(t")) 

x Fit, Po(C')) 7 s  ~ i t ,  Fit, Po(C'))) + N (C, Fit, Po(C'))) 

xIo-~F(F(Po( t" ) ,  t), t ' ) ]  -~ 

(1 + 02 + 2t(2 + 2t't" + t)(t' + t") + (1 + 2t)(t '2 + t "2) + 4t(t + 2) t't" 
(1 + t' + t + t") 2 

(6t't" + 2)(t' + t") + 2t't"(3t't" + 4) 
+ (1 + t ' +  t +  t") 2 (38) 

Notice that ( #  (t') # ( t ' +  t))liretimo=,,+,+c, is symmetric in t' and t". 
This was to be expected since the ensemble of the functions # ( t )  is 
invariant under time reversal. This is so because time reversal switches the 
absorption and extraction probabilities, which at the critical state are the 
same. Of course, this symmetry also holds for the discrete-time model 
presented in ref. 8. 

It is shown in ref. 1 that if the correlation function of an avalanche of life- 
time T is ~ e t/T, then a power law decay in the probability density of life- 
times would yield l / f  noise (see Appendix A). ( # (t') # ( t '+  t) )lire~ime=,'+,+~" 
is not an exponential, but it still yields a nondecaying power law (for t' ~> 1) 
when weighted by d(Po)(t")/dt" = 1/(1 + t")2 and integrated over t": 

( # ( c )  # ( r  + t ) )  

= l + 2 t '  

= fo ~ dt" dPo(t") (39) dt" ( # ( t ' )  #(t '+t))lifetime=, '+,+r '  

The correlation function for a sandpile a t  the critical state under a 
constant flux of grains of sand has been calculated elsewhere. ~15) 

6. R A N D O M  D I S T R I B U T I O N  OF  A V A L A N C H E S  

The purpose of this section is to illustrate how in certain geometrical 
scenarios the grains of sand that are collected come from avalanches 
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of different ages. This could provide an explanation for 1/f noise fi la 
Van der Ziel [see expression (A.5) and ref. 16] if the exponentials i n j  from 
Eq. (19) are integrated with an appropriate time-dependent kernel. We 
have not found such an explanation, but other natural scenarios might 
provide one. 

We present two such cases. In the first one our approximation of 
independence does not apply well, because the grains of sand are goirig to 
be rolling along a straight line and thus interacting. It is, however, 
completely solvable. 

First, consider a cylindrical box with a hole in the center of its bottom. 
There is an inverted sandpile in it, which has the critical slope. Grains of 
sand are added at random locations. The only difference between this and 
the top half of an hourglass whose lid has been reoved and on which sand 
is raining is that the bottom walls of our box are not tilted, so that not all 
of the sand will flow out. See Fig. 1. 

Let T be the radius of our box in a system of units in which the 
average horizontal velocity of a grain in a sandslide is equal to unity. 
Assume that grains of sand belonging to different avalanches are collected 
during nonoverlapping intervals of time. This will be the case if the rate at 

:i 

Fig, 1. One grain of sand is added at a random location to the sand contained in a cylindri- 
cal box with a hole in the center of its bottom. The resulting overflow which falls through the 
hole is collected and counted. 
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which new grains of sand are added and the dispersion in velocities of 
rolling grains of sand are sufficiently small and if the average velocity is 
sufficiently large. Then, denoting by H'(j, T) the probability for an over- 
flow to consist o f j  grains, 

H '  " 1 I r (j, T) = ~ Jo dt 2rttPj(t) (40) 

co . k p  Since ~ j = o J  j ( t ) =  1 for k = 0 ,  1, the H'(j, T) are also normalized 
and their expectation value is also one. From Eq. (17) it is easy to check 
that 

2 2 
H'(0, T ) =  1 - ~ + - ~ - 5  ln(1 + T) (41) 

and 

where 

H'(j, T) = ~-72 l '  j e N *  = {1, 2, 3,...} (42) 
l = j + l  

T 
- (43) 

I + T  

Upper and lower bounds for the functions H'(j, T), j = 1, 2, 3 ..... in terms 
of the exponential integral function Ei(x) (ref. 17, p. 927) have been given 
elsewhere.(ls) 

In Section III.C of ref. 1 a similar situation (the difference being that 
in ref. 1 the sand overflows at the edges of the circle, instead of at the 
center) is numerically simulated (the simulation is based on an approach 
to the problem different than ours) and their result is that H'(j, T)~j-~,  
where ~ -~ 1. Plots of In H'(j, T) against In j (see Fig. 2) show that for large 
j and T, H'(j, T) can be approximated by j-~(v). However, c~(T) is in fact 
a decreasing function of j and can be very different from 1. 

There is a recurrence relation for the H'(j, T) for higher dimensions. 
If we denote by H'n(j, T) the probability for collecting j grains in a situa- 
tion analogous to the one previously described, but in n dimensions, 

II~,(j, T) = ~ dt t ~- ~Pj(t) (44) 

then the following relations hold(IS): 

n 
' H '  _ 1(0, T) (45) Hn(0, T ) = I  ( n - 1 ) T  n 



1 8 0  G a r e i a - P e l a y o  e t  al. 

-1  

-20 

-30  

. . . . . . . .  3 ~ Ini 
~ ~ , ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

In (n'(j,9)) 

�9 ~ ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

%~ 
~ 

% 
~176 
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Fig. 2. Logarithmic plots of H'(j, 9) and H'(j, 2/3) for j =  1, 2,..., 40. H'(j, 9) is the upper 
curve. Notice that the greater j and T are, the wider is the range over which H'(j, T) can be 
approximated by a power law. If H'(j, T) ~ j - %  c~ -~ - 5  for (j, T) = (40, 9) and ~ --- - 4 0  for 
(j, T) = (40, 2/3). 

and 

H'n(j, T) ?'l I T j n ( n + j - 2 )  -H '  l(j, T) (46) 
n - 2  r 2 (1 + r ) ,  T " -  

N o w  consider the other case, where the grains of the avalanches, 
instead of going to the hole in the center, propagate isotropically (we can 
image that in the previous experiment the walls have been removed). We 
are still interested in the overflow collected at the center. This particular 
model is not realizable with sand. We are, however, not interested in 
sand avalanches per se, but as paradigms of self-organized criticality. (l's'6) 
Furthermore, this model is natural if one thinks of a chain reaction (e.g., 
in a piece of fissionable material). 

If we denote by H,( j ,  7") the function that now plays the role of the 
1-l',(j, 7"), IIn(j, T) will again be calculated by means of an integral between 
0 and T. We now explain that the contribution of spherical shells of radius 
t to Fig(j, T), for large j ' s  and a not too small t is proportional to 

t ( ' -  ')t (" 1)Pjczr~/:/r(./2)] t(.-1)(t 2) (47) 

The factor t " -J  is proportional to its area. The other factor t"-1 comes 
from the normalization condition: 

l'[n(j, r ) =  f T  dt 2=n/2 t n-1 (48) 
j=O 

The argument is t 2 because it takes the avalanche a time proportional to 
t 2 to reach the center if we assume that the grains take on a random 
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direction after each collision. The subscript of P, [2H"/2/F(n/2)] t n- 1, is 
the area of an ( n -  1)-dimensional spherical shell. It takes into account how 
the density of grains thins out as the avalanche progresses. 

If j were not large, then avalanches whose total number of grains of 
sand is different from j[2Hn/2/F(n/2)] t ~- 1 could give, by chance, nonzero 
contributions. If t is small, then j[2H(n/2)/F(n/2)] t"-~ can become < 1, 
and then the functional form of the probability changes. Also, the finite size 
of the collecting hole would play a role. 

It follows from (19) and (47) that the contribution of distant shells to 
H,(j ,  T) for large j 's  is going to be very small. Thus, as we increase T, the 
change in size of the system will affect only the H,(L T) of smaller and 
smaller j's. The H,,(j, T) of high j 's become saturated until, beyond a 
certain T, only H,(1, T) changes with size. 

7. T H E  M O D E L  W I T H O U T  T H E  P R O B A B I L I S T I C  
I N D E P E N D E N C E  A P P R O X I M A T I O N  

In Section 2 we assumed the probabilistic independence of grains of 
sand. Due to this approximation the Chapman-Kolmogorov equations 
describe in fact an avalanche taking place in an infinite number of dimen- 
sions, where the probability for any two grain paths to meet is zero. One 
can ask if there exists a dimension above which the infinite-time limit 
of a "real" avalanche would be correctly described by the Chapman- 
Kolmogorov equations. This question will be addressed elsewhere/18~ 

To go beyond the probabilistic independence approximation we have 
studied avalanches numerically. Before we present our results we must 
justify that the simulation of a discrete-time branching process can also be 
used to study continuous-time branching processes. We have done so in 
Appendix B. 

The avalanches have been simulated as follows. In a rectangle, absorp- 
tion and extraction sites have been randomly distributed with a density of 
# each. A grain of sand starts at the midpoint of the top side of the 
rectangle and moves down with a probability p and to either side with a 
probability (1 -p) /2 .  We have done simulations for the following pairs of 
values of (#, p): (0.01, 0.9), (0.05, 0.9), and (0.01, 0.5). The length of the 
rectangle has always been 471 sites, and its width has been 50 sites for 
p = 0.9 and 100 sites for p = 0.5. For each pair we have done simulations 
under two different conditions: regeneration and nonregeneration of the 
absorption/extraction sites. The idea of regeneration is that if the absorp- 
tion and extraction sites continue to exist even after a grain of sand has 
visited them, then tracks of different grains cannot cross, because they do 
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not leave tracks in the first place. We know that this trick does not 
eliminate all the correlations due to the finite dimensionality, because it is 
still true that grains that are near each other are going to visit similar 
configurations of absorption/extraction sites. Nonregeneration of 
absorption/extraction sites corresponds, of course, to the simulation of a 
two-dimensional avalanche. 

We believe that in a finite number of dimensions the lifetimes of the 
avalanches are going to be longer, for the following reason: A grain of sand 
that is on the path that was taken by another grain is not going to be 
absorbed or is not going to extract another grain, because if either were 
possible the path would have ended or bifurcated, respectively. This situa- 
tion creates some waiting time for the grain. Our own computer  simula- 
tions in two dimensions have yielded an exponent of - 2  for the distribu- 
tion of lifetimes (Fig. 3), as predicted by equation (21). We do not know if 
this means that the above-mentioned effect is still too small to be detected, 
or if it means that the asymptotic exponent is going to be unaffected: 

Probably the most direct way to test the validity of the approximation 
is to compare the expressions (17) for Pj(t), j=O, 1,2,..., to the ones 
obtained from the simulation (see Fig. 4). We have done so for all six (#, p) 

i i . . . . . .  
0 1 2 3 4 5 6 

Ln(Time) 

Fig. 3. Logarithmic plot of the lifetime probability density. The continuous curve is the 
analytical prediction; the dotted and dashed lines have been obtained from simulations with 
and without regeheration, respectively. The parameters are (#, p)=(0.01, 0.9), and 4000 
simulations of lifetimes .N< 628 have been used for each of the experimental curves. 
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Fig. 4. The number of avalanches with a given number of grains of sand, plotted on a 
logarithmic scale, for six different conditions. The cross is the result of the simulation, while 
the two dots are the values given by the Chapman-Kolmogoi 'ov equations __ a. Sometimes 
these symbols are on the top of another and not all three of them are distinguishable. The 
logarithmic scale is convenient because of the large difference between the first value and 
the rest, and because the Chapman-Kolmogorov equations predict a geometric decrease for 
the values different from the first�9 However, it can be misleading in estimating the magnitude 
of the errors. In particular, the deviations for the first value are much larger than they seem. 
For (a)~(f) they are approximately +6, --1.5, +13, - 5 ,  - 3  and - 3  a's. Note that the 
parameter #t = 5 for all six figures; (no) regeneration refers to the absorption/extraction sites. 
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pairs for various times. There is an overall good agreement. The deviations 
were of the order of 0 to 2 a's for #=0.01 and 0 to 5 a's for #=0.05 
[except for the Po(t), for which they were about twice as large as for the 
P+(t), j ~ 0 ] .  

A more intensive numerical study is needed to study the statistically 
significant deviations from the Chapman-Kolmogorov predictions. Note 
that since for a discrete-time branching process the generating function at 
time step n is equal to the nth iterate of the generating function at time step 
1, (9) the present section could be read as a study of whether our computer 
simulation would be a good Monte Carlo method for iterating polynomials 
of positive coefficients. 

8. CONCLUSIONS 

For a single avalanche, branching process models based on the 
Chapman-Kolmogorov equations or on its discrete-time counterpart, 
called the Galton-Watson process, (9) predict a t -2 distribution of lifetimes, 
an exponential decay in the size of the overflows, and a power law distribu- 
tion, with an exponent of -3/2,  for the sizes of the avalanches. 

The time correlation functions found are polynomials or rational func- 
tions which display power law behavior for large times. They lack a time 
scale, however, in a more trivial and fundamental way, which comes from 
the fact that the variables # and t always appear as the product #t, since 
this is the way in which they appear in the infinitesimal process. This 
means that if/~ is unknown, a continuous-time critical branching process 
cannot be used to calibrate a clock. Obviously, this symmetry is not shared 
by the discrete-time model. 

The computer simulations suggest that the approximation of proba- 
bilistic independence in not a crude one, and that, for a certain range of 
parameters, the Chapman-Kolmogorov equations could describe real 
phenomena. 

APPENDIX A 

Let a correlation function be of the form 

Itl -~, t~R, ~ 6 R  (A.1) 

Of course, if the signal is of finite amplitude, expression (A.1) can only be 
an approximation to the real correlation function. 
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The power spectrum corresponding to It]-~ is 

S(co) = dt Itl ~ e -i2~~ 
oO 

~- kcz 1 d(kt) Iktl ~ e i 2 : ~ ( ~  - ~  k ~ - 1 S  (A.2) 
- - o 0  

where k is a real positive number. Thus the power spectrum S(co) will be 
the solution to the functional equation 

whose unique solution is (ref. 20, p. 319) 

S(o)  = S(1) co ~-I (A.4) 

One instance in which the correlation function is of the form Itl-~ is 
when there are exponentially decaying processes with lifetimes distributed 
according to a power law. This can be seen from the following integral: 

1 f o  Itl ~=F(~)  d r ~ - l - ~  e Itl/~ (A.5) 

APPENDIX B 

We will show here that the expressions for Pj(t) for the discrete-time 
model have the same t ~ ~ limit as (19). Now rewrite (19), together with 
its t ~ ~ limits, in a fashion more appropriate to follow the argument of 
the Appendix. Also, the density # will be explicitly written. We have 

. ~ 1 -  + 0  P~ +#t  t~o~ yt 

Pj(t) = - ~  \ l - - ~  t J J \ ~ - ~  t J ' j # O 

lim  + O (B.1) 

Let us denote by Pj(n), n =  1, 2, 3,..., the corresponding discrete-time 
expressions. Po(n) satisfies (9) 

Po((n + 1)) =f(Po(n)) (B.2) 
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where 

f ( s )  - #s 2 + (1 - 2#) s + # (B.3) 

is called the generating function and # is the probability of death or 
splitting in a step of time. Equation (B.2) can be written 

Po((n + 1)) - Po(n) 
- # ( P o ( n )  - 1 )2 ( B . 4 )  

( n + l ) - n  

If we now pretend that n is a continuous variable, Eq. (B.4) becomes a 
differential equation whose solution for the boundary conditions P0(1 )=  #, 
P 0 ( ~ ) =  1 [-since for the process specified by Eq. (B.3) the probability of 
extinction is 1; see ref. 9, p. 7] satisfies 

1 
lim Po(n)= 1 - - -  (B.5) 

n~ ~ #n 

like the corresponding term of Eq. (B.1). 
The n ~ oo form of Pj(n) f o r j r  can be obtained from a theorem due 

to Yaglom/19~ (see ref. 9, p. 22). It is 

lim P j (n )=  lim ~ P , ( n ) -  lim ~ P,(n) 
n--*oo n ~ o o  l = j  n ~ o o  l = j + l  

= lira [ 1 - P o ( n ) ]  e (j+l)/~._ lim [ 1 - P o ( n ) ]  e -j/~ 
n ---~ oo n ~ o o  

1 - e l/n# 
_ _  ( e - 1 / n . u ) J  

n# 

where in the last equality Eq. (B.5) has been used. Here 

lim n #  # 2 n 2  + O 
n~cx3 

lime 1+o((;) 2) 

(B.6) 

like the corresponding parts of Eq. (B. 1). 
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